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Abstract 
 

Gel-like materials are ubiquitous in modern manufactured products, the human body, and food. 

Further advanced applications of gels require producing gels with finely tuned mechanical 

responses. However, such tuning requires an understanding of how these responses originate in 

the microscopic properties of the gel’s molecular network, such as the bending rigidity of gel 

network branches. This investigation relies on 3D computer simulations to study how the bending 

rigidity affects a gel’s mechanical response to shear strain. Increased bending rigidity decreases 

both the critical strain at which the gel’s load curve switches from linear to nonlinear, as well as 

the yield strain. Overall, the nonlinear regime becomes shorter. This is similar to the effects of 

increased network density, likely because both bending rigidity and high density restrict the 

network’s ability to rearrange in response to deformation. In addition to the supporting data, this 

text describes the main physical properties of the soft gels that motivated the study, the numerical 

approach taken to simulate the gel, and important questions to investigate in further studies. 

 

Introduction 

 
A. Soft matter and gels 

 

Many of the materials that dominate problems in manufacturing and medicine in the 21st 

century cannot be described as simply “liquid” or “solid”, but as something in between, having a 

combination of properties from both groups. Generally, these materials are known by such terms 

as “soft matter” and “complex fluids”.1,2 A common characteristic of soft matter materials is that 

their structural units are large compared to atoms. (Classical solids, by contrast, typically are 

crystalline arrangements of single ions.3) At room temperature, soft matter typically exhibits a 

response to weak forces that is non-linear and rather large relative to the force.2,4 The relative ease 

of deformation renders the feeling of softness. 

The non-linear response of soft matter adds a layer of complexity that must be understood in 

order to develop materials for industrial, medical, and gastronomical uses with specific 

characteristics. One type of complex fluid is a gel. Structurally, a gel is a network of polymers, 

particles, or fibers with a solvent trapped inside the network.5,6 Functionally, such materials can 

change from solid-like to liquid-like behavior under deformation.1 They can be deformed large 

amounts before breaking, or can even self-heal upon breaking. 

 

B. Designing better gels 

 

Gels are everywhere in our world. Naturally occurring gels include networks of collagen and 

actin, which make up, respectively, the extracellular matrix and cellular cytoskeleton of most 

animals, including humans.7–10 Synthetic gels constitute a wide variety of materials integral to the 

functioning of society, including cement, as well as a number of foods integral to some diets, such 

as yoghurt, jellies, and gelatin desserts.11,12 Like gels, rubbers also contain a complex polymer or 

fiber network, and so the theory of rubber elasticity is also applicable to gels.13 The major 



difference between a gel and a rubber is that a solvent is typically trapped within a gel’s network, 

while a rubber’s network is so dense that it does not contain any solvent.6 

Gels are a class of material that can provide a continually widening range of practical uses. 

Self-healing materials investigated in laboratories, for example, are being developed to function 

in a wide range of environments, allowing for uses in automotive design, household appliances, 

and packaging.14,15 As the human body is replete with gel-like substances, development of 

biotechnology requires inventing a variety of gels with physical properties that will interface 

appropriately with living tissue.16–18  

In order to create such materials, a rigorous understanding of the gel’s microscopic structure 

is required, as this structure determines gel mechanics to a large degree. Microscopic network 

properties such as local density, bond angle, local stiffness, connectivity, and morphology define 

the material structure which collectively entails the material’s macroscopic behavior. In order to 

develop new gels having the specific behavior required for a particular medical or industrial use, 

one must understand what particular properties of the molecular network correspond to these 

desired macroscopic properties.19 This relationship is not well understood.20 Such an 

understanding also applies to existing biological materials studied in medicine, such as collagen 

and actin. A deeper microscopic understanding of collagen and actin networks would allow doctors 

and biomedical engineers to target an important pathway for the mechanical failings of cells, 

organs, and other tissues.21–24 

 

C. Strain and stress tensors 

 

The mechanical response properties of any material can be characterized in terms of stress and 

strain, each one requiring a tensorial description. 

A material can be modeled as a continuous medium that is divisible into discrete volume 

elements. The position of each volume can be described by its center of mass. The position of any 

volume element may change when the material of the body is deformed. 

The displacement vector u represents the displacement of a given volume element due to 

deformation: 

𝑢𝑖 = 𝑥′𝑖 − 𝑥𝑖 

where 𝑥 is the position of the element’s center of mass before the deformation and 𝑥′ is the 

position after. The subscript i refers to one of the three components of dimension in Euclidean 

space (e.g. x, y, or z). 

The strain tensor is an operator that relates the displacement of the volume element to the initial 

position of the volume element. Each component of the strain tensor uij shows how the position in 

the i-component (xi) of a given point particle changes with respect to changes in the j-component. 

This relationship is given by 

𝑢𝑖𝑗 =  𝑢𝑗𝑖 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

and holds for small deformations.25 

Internal forces act at the interface between every two adjacent volume elements. These are 

actually the forces acting between microscopic units of the material on opposite sides of the given 

interface. In amorphous solids, there may be internal forces balanced between these volume 

elements since the microscopic units sit at local but not absolute minima of their total potential of 

free energy. When the material is strained, displacing the microscopic units alters their potential 

energy, causing changes in the forces between the volume elements. 



Each component of force (Fi) on a given volume element can be written as a surface integral 

over the surface area: 

∫ 𝐹𝑖𝑑𝑉 = ∮ 𝜎𝑖𝑗𝑑𝑓𝑗 

where 𝜎𝑖𝑗 is a component of the stress tensor and 𝑑𝑓𝑗 is the portion of the surface area normal to 

𝑗̂. The relation directly above is valid for all possible combinations of 𝐹𝑖 and 𝑑𝑓𝑗, meaning that 𝜎𝑖𝑗 

defines components of the stress tensor for every such combination.25 While I can compute the 

whole stress tensor, in the following I focus on its shear component. 

 

D. Rheology 

 

Rheology is the study of flow and deformation, measuring the viscosity and elasticity of the 

material in question.26 Experiments may apply strain and measure resulting stress, and vice versa. 

Our simulations model the former process. 

An instrument which takes rheological measurements is known as a rheometer. In the most 

common experimental systems, strain is applied by spinning a plate on the surface of a sample of 

the substance while the surface supporting the substance from below remains stationary or spins 

in the opposite direction (Fig. 1a). This applied strain is shear strain, denoted as xy, where x is the 

axis along which the deformation is applied and y is the axis normal to the surface along which the 

deformation is applied. This type of deformation is easiest to apply in a controlled manner, and the 

resulting shear component of strain (𝜎𝑥𝑦) is most convenient to measure. The reverse (i.e. applying 

stress and measuring the resulting strain) can also be done, though my measurements center around 

the former. Much rheological data quantifies relationships between shear stress and shear strain. 

While the spinning plate method shown in Figure 1a provides helpful measurements of 

mechanical response over a uniform gap (h), different shapes of instruments are required for testing 

multiple values of h at once or measuring normal stress differences. A cone and plate arrangement, 

as shown in Figure 1b, is a more popular choice because the geometry of a cone can test those 

variables.1 

This investigation makes measurements exclusively of shear stress and shear strain. Unless 

otherwise noted, assume henceforth that a symbol for strain (𝛾) or stress (𝜎) refers to its shear 

component. The shear strain is defined as  

𝛾(𝑡) =  
𝑑(𝑡)

ℎ
 



where h is the depth of the substance 

and d(t) is the distance that any point 

on the plate has traveled over time t.6 

The shear stress is computed as the 

average of 𝜎𝑥𝑦 across all volume 

elements in the sample. 

I will consider the strain to be 

applied in a stepwise manner. The 

accumulated step strain 𝛾(𝑡) is defined 

as26 

𝛾(𝑡) = ∑ ∆𝛾𝑖Θ(𝑡 − 𝑡𝑖)

𝑖

 

where i is an index for every step in the 

function. 𝑡𝑖 is thus the time at which 

step i occurs, and ∆𝛾𝑖 is the amount of 

strain (i.e. the “height” of the step) that 

is added at 𝑡𝑖. Our simulation features 

both a ∆𝛾𝑖 and ∆𝑡𝑖 that remain constant 

through the simulation. Since the two 

quantities are independent of the 

specific i, they are henceforth written 

as ∆𝛾 and as ∆𝑡. In simulations, the 

box containing particles is deformed 

instantaneously with the intended ∆𝛾, 

forcing the particles within to adjust. 

This deformation is followed by a 

period of time ∆𝑡 in which no strain is 

applied (Fig. 2).  

When both ∆𝛾 and ∆𝑡 are 

sufficiently small, the accumulated 

step strain can be described by a single, 

continuous line connecting the front 

edges of the staircase formed by ∆𝛾 

and ∆𝑡 (Fig. 2). This line represents the 

strain rate. Strain rate is defined as  

𝛾̇ =
∆𝛾

∆𝑡
  

where ∆𝑡 is the time between steps. A change in strain rate can be effected by changing either ∆𝛾 

or ∆𝑡. When there is a linear relationship between stress and strain, the slope of the line 

describing this relationship is dependent on the strain rate. A relationship between the stress and 

strain of a material is known as a load curve. 

In a simple elastic materials, the shear stress is linearly related to shear strain by the shear 

modulus G:26 

𝜎 = 𝐺𝛾 

 

 
 

Figure 1. Different geometries of rheometers. (a, left) The plate-plate 
method creates strain across a sample of uniform depth h. (b, right) 
The cone and plate method is more versatile and allows for testing of 
multiple sample depths at once. The rotational nature of both designs 
lends itself handily for oscillatory patterns of strain. Borrowed from Ref. 
27. 

 
Figure 2. Step strain describes a process by which strain accumulates 
in discrete bursts of ∆γ (vertical line segments), each burst separated 
by a time interval of ∆t (horizontal line segments). When ∆γ and ∆t are 
sufficiently small, the staircase shape can be abstracted to a line of 
slope Δγ⁄Δt (green dotted line), which represents the strain rate γ ̇. 

 
 

 



In soft matter such as gels, however, the relationship is more complicated.19 Typically, the gel 

load curve exhibits such a linear relationship at low strains, but the stress begins to increase 

exponentially beyond a certain level of strain (Fig. 3). This critical strain is denoted by c. The 

shear stress at c is denoted by c. I use these quantities to characterize the model gel’s mechanical 

response.  

Because the load curve becomes nonlinear at higher strains, the shear modulus G cannot 

describe the function across all relevant strains. The differential modulus, K, is a parameter that 

can describe the form of a load curve outside the confines of a linear relationship. While a 

differential modulus can be made from any component of strain and of stress, here I mean the 

shear modulus, in which both the strain and stress considered are shear components:  

𝐾 =
𝑑𝜎

𝑑𝛾
 

The nonlinear regime is understood as a regime of material stiffening, known as strain stiffening.27 

This regime can be characterized by the exponent , extracted from a best fit curve over the 

nonlinear portion with the form: 

𝐾 = 𝐴𝜎𝛼 

The exponent is an indicator of the material’s performance, as a larger  means that the material 

exhibits a stronger internal stress reaction to strain. This is an important characteristic of 

mechanical response, as a more quickly aggregating stress response may render a material unstable 

under rapid strain. 

Common biopolymers 

show clear variation in this 

exponent: while =1 for 

collagen, the main 

component of the 

extracellular matrix,  

tends towards 3/2 for actin 

and intermediate filament 

networks which scaffold 

the interior of the cells.27 𝐴 

is an arbitrary constant. 

As with a simple elastic 

material, a gel will reach a 

maximum strain after 

which the material will 

yield or break. This 

maximum strain that the 

gel can support is the yield 

strain max. Obviously, the 

yield strain is an 

extraordinarily relevant 

property for materials 

development. After a gel 

passes the yield strain, it is 

no longer elastic, and a 

material that is expected to 

 
Figure 3. Load curve of a typical gel. A load curve shows stress (𝜎) as a function of 
strain (𝛾). I use mainly shear components of both stress and strain. At low strains, a 
gel exhibits a linear elastic response, where strain is related to stress by the shear 
modulus G:  𝜎 = 𝐺𝛾. At higher strains, the curve transitions into a nonlinear strain 
stiffening regime. The strain at which the load curve transitions between linear and 
nonlinear is known as the critical strain (𝛾𝑐), and the exhibited stress is known as the 
critical stress (𝜎𝑐). At even higher strains, the material yields and the load curve ceases 
to follow a significant form. Image borrowed from Ref. 36. 

 



maintain elastic properties would majorly disappoint if conditions in its environment take it past 

the yield strain.  

 

E. Microscopic properties 

 

The nonlinear regime is 

known to result from two 

phenomena in gel network 

structure.28 First, stresses in 

deforming gels progressively 

align to the extensional axis of 

shear (45°) as shear strain 

accumulates. Not coincidentally, 

orientation of filament chains (a 

chain being a series of gel 

branches that are connected end 

to end in a single, non-divergent 

strand) corresponds to this 

progressively aligning stress. 

This occurs because the space 

between the top and bottom 

surfaces of the gel is increasing, 

creating a need for joints in the filament branches to unbend to achieve their longest possible 

configuration, which is by definition where they are connected end-to-end in a straight line. 

Second, once these chains are unbent to their maximum length, the deformation pulls at the 

filament branches themselves. The stress is concentrated in these chains, meaning that the 

resistance to deformation is heavily concentrated in a few parts of the structure (Fig. 4). The intense 

stress leads these chain segments to break, which triggers the yielding of the entire gel since the 

gel depends largely on those few chains to bear the stress of the deformation. The point at which 

these chains break is the yield strain max, i.e. where the nonlinear regime ends. Each filament 

branch can be thought of as a bond between two gel particles. Bonds break and new bonds form 

before max, but after max the rate of newly broken bonds exceeds the rates of newly formed bonds, 

causing an overall decrease in the number of bonds. Although slower shear rates allow more bonds 

to reform after max, the strength of the material does not recover since these bonds are formed in 

such a way that they are not capable of bearing further stress.19 

The form of the nonlinear regime depends on the balance between stretching and bending 

modes of the filament network. A stretching mode refers to the elastic resistance of a single 

filament branch to deformation when it is pulled. A bending mode refers to how the bending or 

unbending of a joint between two filament branches either contributes to or resists deformation.27 

Density of the gel network affects the balance between the stretching and bending modes, 

which in turn affects the size and form of the nonlinear regime. In all cases, stretching modes resist 

the deformation, since any filament branch spanning a structure that is pulled apart will work to 

hold the structure together until the branch yields. Bending modes vary, however. At low densities, 

stretching modes resist the deformation while bending modes favor the deformation. A 3-body 

potential term makes it energetically more favorable for two bonds on a single particle to be 

directly opposite each other. The only thing keeping this from happening would be a third bond 

 
Figure 4. A snapshot of a gel network under shear strain. Only bonds are shown, 
and thicker strands show bonds that are subject to a disproportionate amount of 
stress. Blue indicates where breaking will happen. Image borrowed from Ref. 30. 

 
 



keeping the joint from unbending, similar to a finger holding 

back a bowstring to keep it from tightening under tension from 

the bow. At low number densities (e.g. 5%), there are few extra 

particles nearby to create this third bond, permitting many 

initial filament branch joints to use the deformation as an 

opportunity to achieve the lower-energy state of a straight chain 

link. The relaxed bending modes allow the gel to somewhat 

soften before the overstretched chains break and cause the gel 

to yield. In this case, the stretching and bending modes balance 

each other until yielding, resulting in a prolonged nonlinear 

regime (Fig. 5).19  

At higher densities (e.g. 10%), the bending modes are 

overcome by the stretching mode, causing the gel to stiffen 

instead of soften. The higher density means there are more 3-

bond particles, henceforth referred to as nodes, which prevent the bent filament joints from 

unbending to relieve their stress. The brunt of the stress resulting from the deformation is thus 

borne by the stretching mode. There is still enough space, however, that there are plenty of chains 

(although fewer than with 5% density) on which the stress can accumulate before those filament 

chains yield.19  

At even higher densities (e.g. 15%), there is little space for the filament chains to develop since 

a more crowded space requires a higher amount of bonds between particles in close quarters, and 

thus many nodes. As a result, the deformation does not allow the filament joints an opportunity to 

relieve their stresses, as there are too many “third” bonds locking the branches of the filament 

joints in place. Thus, with few chains to bear the brunt of the deformation, the stress is more evenly 

distributed throughout this gridlocked network of gel branches. The system is able to bear greater 

amounts of stress since more of the branches are able to resist the deformation. However, the dense, 

gridlocked system contains few opportunities for structural readjustment in response to the 

deformation, causing the system to quickly stiffen and break. Because the joints cannot unbend in 

the direction they please, the bending modes join the stretching modes in resisting deformation. 

Hence the nonlinear regime is limited for high densities, meaning a quick transition between the 

linear, elastic regime and the yielding regime (Fig. 5). Due to this even distribution of stress, more 

branches become overstressed at the same time, leading to a higher number of bonds breaking 

immediately at max.19 

The form of the nonlinear regime, not just its size, is also important. As mentioned above,  is 

the exponent that characterizes the nonlinear regime. At high strains, the gel load curves display a 

nonlinear regime similar to the biopolymer actin. However, the biopolymer collagen shows a linear 

dependence (=1) even for high strains. What gives the two biopolymers, each of which compose 

major portions of living organisms, such different properties? There are potentially two separate 

components of the nonlinear regimes: the low strain regime (following the linear, elastic portion), 

which is dominated by bending modes, and the high strain regime (directly preceding yielding) 

which is dominated by stretching modes. The linear regime observed in collagen has the 

appearance of the low strain, bend-dominated regime without ever transitioning to the high strain, 

stretch-dominated one.27 Some quality of the polymer collagen may prevent stretching modes from 

becoming significant even at high strains. The origin of the nonlinear regime in general could be 

explained by entropic contributions to free energy in the system thanks to the increased 

heterogeneity afforded by the gel branches’ flexibility.19 Moreover, separate models for simulating 

 
Figure 5. Changes in max and c as a 
function of number density. Borrowed 
from Ref. 19.  

 



gels also show a similar variation in 

 values. While simulations using 

the featured show  falling between 

1 and 3/2, investigations using 

another popular model show  

falling between ½ and 1.7,19 Since 

competing stretching and bending 

modes could potentially explain the 

discrepancy between collagen (=1) 

and actin (=3/2), perhaps this same 

competition could explain the 

discrepancy between the other model 

(=1) and the featured model 

(=3/2). 

Familiar with the sensitivity of 

the nonlinear regime to the two 

modes, I supposed that altering the 

balance of the bending and stretching modes could be an effective mechanism for controlling the 

mechanical response of a gel. In this investigation, I alter the bending rigidity of the filament joints 

and assess the effect that this changed rigidity has on the gel’s mechanical response. During the 

preparation of gels, chemical and thermal mechanisms can be leveraged to alter bending rigidity 

of the filament joints. Previous experiments show a range of interesting effects that correlate to 

changes in bending rigidity.4,8,29–31 I elaborate, in general terms, how bending rigidity influences 

the ability of a gel to bear stress at a microscopic level. I analyze the effects of changes in bending 

rigidity on the mechanical response, as well as on easily measurable network properties such as 

coordination number. I then comment on these effects using the framework of previous simulations 

and experiments. 

The coordination number (ℂ) of a particular particle indicates the number of other particles to 

which a given gel particle is bonded. The coordination number in the simulations range from 0 to 

4, though 2 and 3 are predominant (Fig. 6). Particles with ℂ = 2 are described as chain links and 

particles with ℂ = 3 are described as nodes. While ℂ = 2 and ℂ = 3 particles each have a special 

role in bearing deformation, tracking the change in relative distribution between the two is a useful 

way to count the change in total bond number and thus the point at which bonds break or form. 

 

Methods 
 

This investigation tests the mechanical response of gels in a numerical model. I model an 

abstracted, generic gel: all distance is measured in terms of particle diameter, all energy is 

measured in terms of a constant 𝜖 in the interactive potential function, and all time measured as a 

function of particle diameter and 𝜖. The model and the numerical methods do not reproduce all the 

details of the experimental studies, admittedly. However, this allows us to disentangle the 

fundamental physical mechanisms at play in a general gel structure, as well as their effect on the 

mechanics, from properties specific to certain types. The gel microscopic units are represented as 

particles interacting through potential attraction and repulsion. 

 

A. Model 

 
Figure 6. The inside of a simulation is visualized. Spheres represent particles 
and the rods between them represent bonds. Green particles are those with 
a coordination number of 2, while red particles have coordination 3.  

 



The gel microscopic units are represented as particles interacting with a potential defined by 

𝑈(𝒓𝟏, … , 𝒓𝑵) = 𝜖 [∑ 𝑢2 (
𝒓𝒊𝒋

𝑑
)

𝑖>𝑗

+ ∑ ∑ 𝑢3 (
𝒓𝒊𝒋

𝑑
,
𝒓𝒊𝒌

𝑑
)

𝑗,𝑘≠𝑖

𝑗>𝑘𝑖

] 

• N is the number of particles 

• 𝒓𝒊 is the position vector of particle i, where i goes from 1 to N 

• 𝒓𝒊𝒋 = 𝒓𝒋 − 𝒓𝒊 

• 𝜖 is the energy scale of the system, the depth of the attractive well, typically 1-100 kBT for 

colloidal particles in aqueous solutions 

• 𝑑 is the particle diameter, typically 10-100 nm for a colloidal system 

• 𝑢2 is a function (defined below) describing the attractive and repulsive interactions 

between two given particles 

• 𝑢3 is a function defining angular rigidity between bonded particles 



 

𝑢2 describes a typical potential 

interaction between two particles, 

changing as the distance between 

them (𝒓𝒊𝒋) changes. The u2 term 

closely corresponds with the 

stretching mode. The potential 

reaches a minimum when 𝑟𝑖𝑗 = r*, an 

energetically favorable distance at 

which the particles are bonded. The 

potential then sharply increases as 

the particles get closer, i.e. as 𝑟𝑖𝑗 →

0 (Fig. 7). 

 

𝑢2(𝑟) = 𝐴(𝑎𝑟−18 − 𝑟−16) 

 

where A and a are constants, set to 

23 and 18. The 3-body term 𝑢3 

describes angular rigidity of a given 

filament joint, where r and r’ 

represent the bonds that make up the 

joint, vectors originating at the 

particle at the vertex of the angle 

(Fig. 8). 

𝑢3(𝒓, 𝒓′) = 𝐵Λ(𝒓)Λ(𝒓′)𝑒−(
𝒓∙𝒓′
𝑟𝑟′ −cos 𝜃̅)

2
𝑤2⁄

 

        

 
Figure 7. Illustration of the 2-body potential term (u2). Upper. The distance between 
the center of two particles are separated by the distance r. Lower. A plot of the u2 
term with respect to r holding all else constant. 

 
 

 
Figure 8. Illustration of the 3-body potential term, u3. Upper. A third particle is 
considered at a distance r’ from the initial two particles. The center particle bonds to 
the nearby particles, the bonds forming the angle 𝜃. Lower. A plot of the u3 term with 

respect to 𝜃 holding all else constant. The maximum value of u3 occurs when 𝜃 = 𝜃̅. 

 

 



The u3 term closely corresponds to the bending mode. 

I single out 𝜃̅ as a parameter that can change the bending rigidity.a For a given pair of adjacent 

bonds r and r’ at a fixed angle, 𝜃̅ is a 

value at which 

exp[− (
𝒓∙𝒓′

𝑟𝑟′
− cos 𝜃̅)

2
𝑤2⁄ ] hits its 

maximum of 1, making 𝑢3 =

𝐵Λ(𝑟)Λ(𝑟′⃑⃑⃑⃑ ).b This occurs when the 

angle (call it 𝜃) between r and r’ is 

equal to 𝜃̅. Deviation of 𝜃 from 𝜃̅ 

causes a decrease in the 𝑢3 term 

whether 𝜃 is at a larger or a smaller 

angle than 𝜃̅ (Fig. 8). Angles larger 

than 𝜃̅ decrease 𝑢3, simulating a 

reduction in repulsion as the angle 

between r and r’ widens. A decrease in 

𝑢3 at smaller angles seems 

counterintuitive since tighter bending 

should equate to a higher energy cost. 

However, this energy cost is accounted 

for in the 𝑢2 term since, as the angle 

gets tighter, the particles on the outside 

of the joint angle will be approaching 

and thus experiencing the repulsion of 

this two-body potential. Changing 𝜃̅ 

changes the value of 𝜃 that will max 

out the 𝑢3 term: progressively higher 𝜃̅ 

values increases this maximum 𝜃, 

causing this least preferred angle to 

become wider and wider, inducing 

filament joints to remain at wider 

angles (Fig. 9). 19,28,32,33 I keep 𝜃̅ <
90°, low enough that there is no safe 

zone of energetically preferred angle 

values less than 𝜃̅. In 3 dimensions for 

particles each hosting no more than 3 

 
a B can also be altered to change the bending stiffness. This would change the strength of the entire 𝑢3 function 
relative to 𝑢2, which has different physical implications than altering 𝜃̅. That difference is beyond the scope of this 
investigation. 
b For this simulation, 𝐵 = 10. Λ(𝑟), the radial modulation, ensures that the 3-body interaction only exists at 
distances of less than two particle diameters. The radial modulation term is defined as:  

Λ(𝑟) = {𝑟−10[1 − (𝑟 2)⁄ 10
]

2
     𝑟 < 2

0                                       𝑟 ≥ 2
 

 

 

 
Figure 9. Intensity of u3 term for a specific filament joint at varying 

values  of 𝜃 and 𝜃̅. Upper. The maximum value of  u3 is achieved 

when of 𝜃 = 𝜃̅. u3 decreases from the maximum as 𝜃 gets either 
higher than or lower than 𝜃̅. Lower. View of the plot from above, 
i.e. looking at the 𝜃𝜃̅-plane. Red indicates highest u3, followed by 
yellow, green, and blue. 

 
 



bonds, bond angles would rarely or never be less than 90°. Note that this means, in practicality, 

no 𝜃 will match the current value of 𝜃̅. 

In this simulation, bonds are generated between two particles whenever the distance between 

them is within a defined “bond length”. Bonds are not computed while the simulation runs.c Rather, 

they can be added when the particle coordinates are visualized (Fig. 6) or computed by a script 

that identifies the distance between every pair of particles. A bond length must be set to match the 

r* arising from the 𝑢2 term. When any |𝒓𝒊𝒋(𝑡1)| ≤ 𝑟∗, 𝒓𝒊𝒋(𝑡1) represents a bond. (If |𝒓𝒊𝒋(𝑡2)| > 𝑟∗ 

even after |𝒓𝒊𝒋(𝑡1)| ≤ 𝑟∗, 𝒓𝒊𝒋(𝑡2) will not be a bond.) In our simulations, r* = 1.3 (in units of 

particle diameter), consistent with earlier experiments using this model.19 

In this model, gels are prepared by heating and rapidly cooling a system of N identical particles. 

Beginning with particles on an fcc lattice at a specified density, system energy (
𝑘𝐵𝑇

𝜖
)  is held at 1 

for an interval of time that varies by simulation. The high temperature provides extreme thermal 

energy to randomize the initial positions of the particles. This varying length of time allows for 

the creation of multiple systems having equivalent macrostates but unique microstates. 
𝑘𝐵𝑇

𝜖
 is then 

steadily decreased from 1 to 0.05 over a short period of time (constant across all simulations), then 

kept at 0.05 for an equivalent interval of time. The high thermal energy (where 𝑘𝐵𝑇 = 𝜖) disrupts 

and melts the crystalline lattice of particles. The subsequent cooling drives the particles’ 

aggregation into a disordered gel network. 

In the simulations, N is fixed by the volume of the system (V) and the number density (𝜌# =
𝑁 𝑉⁄ ). In this investigation, 𝑁 = 4 × 103. The number density 𝜌# = 𝑁 𝑉⁄  is fixed in each 

simulation and I translate it into a volume fraction by considering that the volume 𝑉0 taken up by 

a single particle is 𝑉0 =
4

3
𝜋 (

𝑑

2
)

2
, where d is the diameter of every particle. The solid volume 

fraction is defined as 𝜙 = 𝜌#𝑉0. In this simulation, the particle diameter is used as the unit length. 

Deformation of the system causes particles to move. Deformation disrupts mechanically stable 

positions, which causes a change in the internal stresses that further induces particle movement. 

Random thermal energy also causes particles to move. In this investigation, in order that I can 

focus on the effect of the imposed strain, thermal energy is drained from the system before 

applying strain. This makes kBT very small with respect to the depth of the attractive well 𝜖. This 

is accomplished through a process called damping. 

Damping is accomplished by letting the system evolve following this equation of motion: 

𝑚
𝑑2𝑟𝑖

𝑑𝑡2
= −𝜉

𝑑𝑟𝑖

𝑑𝑡
− ∇⃑⃑⃑𝑟𝑖

𝑈 

where m is the particle mass and 𝜉 is a drag coefficient. As the system iterates through several 

damping steps, kinetic energy is dissipated through the drag term (𝜉
𝑑𝑟⃑𝑖

𝑑𝑡
). This simulates a solvent 

permeating the gel network, which damps the thermal vibrations of the gel particles without 

returning any of the energy to the gel particles. 

 
c The 𝑢2 term, however, effects the physical meaning of a bond in the simulation. The distance r* at which 𝑢2 
reaches a minimum is the stable distance which bonds describe. 



The system is damped until 
𝑘𝐵𝑇

𝜖
< 10−10, at 

which point the kinetic energy is negligible. 

This is usually accomplished within 5 × 106 

steps of ∆𝑡 = 5 × 10−3 𝜏∗, where the unit time 

𝜏∗ = √
𝑚𝑑2

𝜖
. m and d are the mass and diameter 

of the particle, respectively. 𝜃̅=65 for this step 

in all tests in order to make initial formation of 

the gel consistent. 

The simulation box is initially a cube (Fig. 

10). As strain is applied in the xy plane, the xy 

dimensions of the space adjust to accommodate 

the strain. The top edge of the cube appears to 

be pulled in the x direction, analogous to how a 

single block of material would bend if a sliding 

plate along the top were generating shear. I use 

periodic boundaries with Lees-Edwards 

boundary conditions (see Fig. 11) that allows us 

to maintain the deformation.34 

 

          

 
Figure 10. Two snapshots of the simulation box under shear. 
This comes from a system in which 𝜃̅ = 70°. The image on 
the left is the simulation box before shearing begins; the 
image on the right is after a significant amount of shear, 
shortly before an accumulated shear of 50% has been 
applied. Shearing of the xy faces (top and bottom lines) 
renders a parallelogram. The face visible from this vantage 
point is the yz plane. Using Lees-Edwards Boundary 
Conditions, there are copies of the simulation box bordering 
the simulation box above and to the sides. The miniature 
spheres represent gel particles, and the string-like structures 
connecting them represent bonds. Particles in green have a 
coordination number of 2 and particles in red have a 
coordination number of 3. A general bond alignment trend, 
that roughly parallel to the long diagonal of the 
parallelogram in the right-hand image, is visible. 

 

 

 
Figure 11. Lees-Edwards boundary conditions. The 
simulation box is surrounded by copies of itself on all sides. 
The features disappearing through one face of the simulation 
box reappears in the opposite face. The simulation boxes 
bordering on the top and bottom are staggered. Shear strain 
is applied by moving the boxes bordering the top of the 
simulation box in the +x direction and the moving the boxes 
bordering the bottom in the –x direction by an equivalent 
amount. This drags along the top and bottom faces of the 
box in opposite directions, rendering shear strain within the 
box. 

 



B. Varying the stiffness of the gel branches 

 

After the initial damping, the value of 𝜃̅ is changed to the new test value, which range from 

55 to 67 in this investigation. The system is again damped until 
𝑘𝐵𝑇

𝜖
< 10−10 for the same 

number of steps, but at the new test value of 𝜃̅. Such protocol is necessary to make sure I start the 

mechanical tests in similar conditions for all gels studied. 

After the two intervals of damping, the system is deformed in two repeating steps, keeping 𝜃̅  

at its test value. First, a simple shear strain is applied in the xy plane, defined as Γ∆𝛾: 

𝒓′𝒊 = Γ∆𝛾𝒓𝒊 = (
1 ∆𝛾 0
0 1 0
0 0 1

) 𝒓𝒊 

Second, the stresses accumulated during this deformation step are relaxed: 

𝒓′′𝒊 = 𝒯∆𝑡𝒓′𝒊 

where 𝒯Δ𝑡 is the time evolution operator for damped dynamics over a time interval ∆𝑡. After n 

cycles (each  made of the 2 steps), the accumulated strain is 𝑛∆𝛾 and the final position of a given 

particle is (𝒯Δ𝑡ΓΔ𝛾)
𝑛

𝒓𝒊,𝟎, where 𝒓𝒊,𝟎 is the position of the particle at the end of the damping intervals 

a and b. The magnitude of deformation steps (Δ𝛾) must be small compared to the particle size. 

From this procedure I can define a strain rate 𝛾̇ =
∆𝛾

∆𝑡
. The rate can be adjusted by varying ∆𝑡. In 

these simulations, ∆𝛾 = 0.01L, where L is the length of the simulation box. 

 

Results & Discussion 
 

 As previously mentioned, the differential modulus K is calculated halfway between each 

coordinate pair of shear strain and shear stress (Fig. 12). The value of the modulus at each stress 

and strain halfway point is the slope between the two adjacent coordinates. The stress (𝜎) and 

strain (𝛾) values used alongside the modulus are also halfway between the original coordinates, 

calculated as averages of the two coordinates. 

  I use three graphs to depict the 

mechanical response of each gel network: (a) the 

load curve, and the differential modulus (K) as 

(b) a function of stress and (c) as a function of 

strain (Fig. 13). For simplicity, I use K() to 

describe the graph of the differential modulus 

(K) as a function of shear stress (𝜎𝑥𝑦), and K() 

to describe the graph of the differential modulus 

(K) as a function of shear strain (𝛾𝑥𝑦). 

 As expected, the load curve begins as 

a linear relationship between stress and strain 

but begins to increase exponentially after some 

intermediate level of accumulated strain, c (Fig. 

3, Fig. 13c). However, the distinction between 

the two regions is ambiguous, especially in the 

context of the load curve alone. In fact, the two 

regions may even overlap since both the elastic 

 
Figure 12. The shear modulus K is calculated as the slope 
between two consecutive (𝛾, 𝜎) coordinates on a load 
curve. The modulus value is treated as belonging to a point 
halfway between the two points. The 𝛾 and 𝜎 of this point 
halfway between the two points on the initial load curve 
are calculated as the average of the 𝛾 and 𝜎 of the initial 
two consecutive (𝛾, 𝜎) coordinates. 

 



responses (linear) and 

stiffening responses 

(exponential) may exist 

concurrently in different 

regions of the gel. This 

overlap would manifest 

itself in the load curve as an 

ambiguous region which is 

too large to be linear but 

also is not large enough to 

achieve the exponential 

growth rate that is apparent 

at higher strains. Even 

without this region, 

discerning such a transition 

point from the load curve is 

impractical, as the initial 

exponential increase is so 

slightly higher than a linear 

increase that it would 

appear linear to both 

human eye and best fit 

algorithms. I use, instead, 

the graphs of the 

differential modulus to 

determine c and its 

resulting stress value, c. 

Since K is the first 

derivative of  with respect 

to , K() is essentially a 

plot of the load curve’s 

slope (Fig 13a). As such, a 

drastic increase in K() 

shows c more clearly than 

the load curve. Curiously, 

there is often a minimum in 

K() before it makes such a 

drastic increase (Fig. 13a). 

I use this minimum, when 

present, as c. Similarly, the 

increase in K() contains a 

minimum before its value 

sharply increases, which I 

use as c. This minimum 

exists because  increases 

 

 

 



monotonically 

with  in the load 

curve. Values of 

c extracted in 

this manner 

correspond to 

value of c on the 

load curve. 

All gels in 

a single 

macrostate set 

have the same 

number density of 

𝜙=7.5%, 4000 

member particles, 

and the same 𝜃̅ 

value. A 

macrostate set 

was analyzed for 

each value of 𝜃̅ at 

1° intervals for 

55° ≤ 𝜃̅ ≤ 76°. 

The only 

difference 

between the four 

gels within a 

particular 

macrostate set is the length of time during sample preparation at which the system energy (
𝑘𝐵𝑇

𝜖
)  is 

held at 1. The high temperature provides extreme thermal energy to randomize the initial positions 

of the particles, so varying this length of time should render four unique gels. To be consistent, the 

same four prepared gels (labeled a, b, c, and d) were used at every value of 𝜃̅.d Averaging the load 

curves of the four gels in each macrostate set combines the separate but consistent trends for each 

family of gels into an equally consistent average trend. However, it is curious that one prepared 

state, d, has a consistently higher 𝛾𝑚𝑎𝑥  than the other states. The attempt to randomize prepared 

gels has somehow created prepared gels with a clear hierarchy of these particular properties, 

although slight in their differences. Since prepared states a-d have equivalent macrostates, I 

suppose that particular arrangements of particles at the end of the heating interval by chance 

happen to be mechanically superior to other particular arrangements. The quality that makes an 

arrangement so mechanically superior can at this point only be guessed. 

Identifying 𝛾𝑚𝑎𝑥  was incredibly challenging, and not easily done using the load curve 

alone. The load curve tended to remain continuous, but often contained multiple local minima after 

𝛾𝑐  which could be interpreted as 𝛾𝑚𝑎𝑥 . Typically, 𝛾𝑚𝑎𝑥  would be the local minimum that occurs at 

the lowest value of strain after 𝛾𝑐 . However, comparisons between different load curves showed 

 
d Recall that the initial preparation process is done at 𝜃̅ = 65° for all samples, regardless of the 𝜃̅ value being 
tested (Methods -> Model -> Preparation Protocol). 

 
Figure 13. Average plot  of load curve, K(), and K() for 𝜃̅ = 70°. a) Plot of the differential modulus 

(K) with respect to strain (). c is measured as the strain at which K reaches its first minimum. max is 
measured as the strain at which K reaches its first local maximum before the function becomes 

erratic. b) Plot of the differential modulus (K) with respect to strain ().c is measured as the stress 

value at which K reaches its first minimum. c) Load curve. c and c occur where load curve transitions 

from linear to nonlinear, though this point is difficult to interpret. max is measured as the strain at 
which the curve ceases to increase smoothly. 

 



that this point varied greatly even for different simulated gels with the same value of 𝜃̅. Gels in the 

same macrostate set had a significant spread of values 𝛾𝑚𝑎𝑥 , but gels with the same initial prepared 

configuration changed with 𝜃̅ in a way that was consistent between each family of gels, just as 

with c and c.  

Using the average of each macrostate set load curve should take care of this problem, 

though in the case of 𝛾𝑚𝑎𝑥  the averaged load curve makes the story more complicated. For 𝜃̅ =
65°, the average load curve for our macrostate set shows a few key differences with the load curve 

of a single gel that was much larger, where 𝑁 ≈ 20,000. The larger gel’s curve remains smooth 

up to higher levels of strain and thus has a significantly higher 𝛾𝑚𝑎𝑥  value based off the load curve 

alone. Additionally, the portion of the curve common to both graphs is significantly smoother for 

the large gel’s curve. This shows that many of the fluctuations in the load curve at high 

accumulated strain is a result of irregularities in the system rather than of an intrinsic limit of the 

gel.  

If the only difference between the average load curve and the large system load curve is 

the number of particles and bonds sampled, one can expect that a smoother curve results because 

the stress response is more easily normalized among a greater population of particles. This idea is 

also apparent in the difference between the average load curve and each of the individual load 

curves in a macrostate set. The 𝛾𝑚𝑎𝑥  value of the average load curve is not the average of the 𝛾𝑚𝑎𝑥  

in each of the individual load curves, but rather is greater in most cases. The average load curve, 

which samples four times as many particles as an individual load curve, is smooth at values of  

that see fluctuation in the individual load curves due to system-specific irregularities. In fact, both 

the average load curves and the large system curve still seem to increase after they begin 

fluctuating. One might even be able to draw a smooth line through the fluctuating path by 

averaging the values. This shows that chasing a perfect curve, completely devoid of these 

fluctuations arising from system-specific irregularities, would require simulating massive systems 

far beyond the available computing power and the available time of the undergraduate performing 

this investigation.  

As with c, my alternative method for determining a specific  value is to look at K(). I 

determine c to be the first local maximum on K() (Fig. 13c). This first local maximum seems to 

be a result of irregularities, as it always precedes a precipitous drop in K to a negative value, which 

theoretically should not exist. However, the irregularities are not system-specific since this 

maximum precedes such a precipitous at every value of 𝜃̅, and the feature is consistent across all 

individual K() curves in the macrostate set. 

Viewed together, the trends of 𝛾𝑚𝑎𝑥  and 𝛾𝑐  as a function of 𝜃̅ show that the nonlinear 

regime becomes smaller with increased bending rigidity. That is, after the system reaches 𝛾𝑐 , a 

higher bending rigidity means that less additional strain is needed to bring the gel to its yield point 

(Fig. 14). 𝛾𝑚𝑎𝑥  decreases slowly with 𝜃̅ at first, but becomes more rapid as 𝜃̅ increases. I see that 

𝛾𝑚𝑎𝑥  begins to plummet near 𝜃̅ = 76°, suggesting that the gel would break at negligibly small 

levels of strain at higher values of 𝜃̅. Fittingly, simulations at values of 𝜃̅ higher than 76° produces 

load curves that are not meaningful with respect to the rest of the simulations: values of stress are 

orders of magnitude lower and features such as the yield point are not even present for 𝜃̅ > 78°. 
Previous research with this model has shown that 𝛾𝑚𝑎𝑥  decreases with increasing 𝜃̅. 𝛾𝑐  drops 

steadily as 𝜃̅ increases from 60° to 66°, but remains essentially constant for 𝜃̅ > 66°. 
Recall that a shrinking of the nonlinear regime also occurs with increased density of the 

sample. I can explain the shrinking nonlinear regime due to bending rigidity using the same 



mechanism. With 

denser networks, 

the stress builds up 

in the stretching 

modes because the 

increased 

connectivity (i.e. 

more nodes) 

prevents the gel 

branches from 

rearranging to 

accommodate the 

deformation. 

Similarly, I can 

picture that 

increased bending 

rigidity also 

restricts the gel 

network’s ability to 

rearrange to 

accommodate 

deformation. The 

potential energy 

associated with a 

filament joint at a 

particular angle 

𝜃 > 90° becomes larger with a higher 𝜃̅. As a result, filament joints have a harder time closing 

more tightly. For the network structure to rearrange to accommodate deformation, some joints 

must close tighter, but with this restriction on bending, the network is not able to rearrange as 

easily. Bending modes may thus favor deformation at lower bending rigidity but resist deformation 

at higher bending rigidity. 

The way in which the nonlinear regime shrinks with increased 𝜃̅ is different than with 

increased density. With density, 𝛾𝑚𝑎𝑥  decreases in the manner of a negative exponent (dropping 

quickly at low strains then leveling out at high strains) while with bending rigidity, 𝛾𝑚𝑎𝑥  drops in 

the manner of a positive exponent (dropping slowly if at all for low strains before taking a sudden, 

deep dive at high strains) (Fig. 14, Fig. 5). Increasing rigidity does not restrict network motion 

until very high values of 𝜃̅, while increasing density seems to do so at all values. I believe increased 

𝜃̅ has a delayed effect because it affects the mechanics on a more fundamental, more microscopic 

level than density. While the ratio of nodes to chain links varies with density, filament joints across 

varying densities are subject to the same energy restrictions. The energy landscape for any given 

filament joint changes completely across varying bending rigidity, however. 

Consider a system with a low 𝜃̅, say 𝜃̅ = 55°. The bond angles, which are largely if not 

completely greater than 90°, are too far removed from the repulsive power of the u3 maximizing 

angle 𝜃̅ = 55° to be significantly affected. A typical joint might need only bend across a certain 

range of angles to adequately react to deformation. Call this range of angles the necessary angular 

domain. None of these angles would require more energy to achieve than the internal stresses can 

 
Figure 14. Change in 𝛾𝑚𝑎𝑥  and 𝛾𝑏 as a function of 𝜃̅. 𝛾𝑏 is the level of accumulated strain at which 
the coordination number distribution begins to change from its initial distribution. This is the point 
at which rate of bond destruction surpasses rate of bond formation.  𝛾𝑚𝑎𝑥  is the yield strain, as 

calculated from the K() curve. Both values were measured with at every degree value for 60° ≤

𝜃̅ ≤ 76° and also for 𝜃̅ = 55°. 



provide.  As 𝜃̅ inches closer to the lower bound of the necessary angular domain, however, the 

smaller angles in the necessary angular domain cannot be achieved with the available stresses, 

since the u3 term for a joint at this angle is increasing. As a result, only exceptionally strong local 

stresses can press the joint into this part of the necessary angular domain. Other joints may need 

to pass only through the higher angles in the necessary angular domain to react to deformation, 

and these rearrangements occur as easily as before. As 𝜃̅ inches yet closer to the necessary angular 

domain, all angles in the domain are affected. Before, only joints that wished to pass through the 

lower values in the necessary angular domain to achieve a relaxed structure were affected. Now, 

even the joints that do not wish to change are affected, pushed by the u3 term to angle values at the 

upper end of and potentially higher than the necessary angular domain. I propose that this transition 

is the causes the bending modes to transition from supporting to resisting the deformation. Once 

all angle values within the necessary angular domain are under significant pressure from the u3 

term, only exceptionally strong local stresses can push angles through the domain. Any further 

increase in 𝜃̅ quickly shrinks the nonlinear regime, as fewer strong local stresses remain 

exceptional enough to fight the u3 term. When the joints are no longer able to bend freely, the 

stretching modes take the brunt of the deformation stresses. 

There could be an entirely different reason for this rapid decrease in 𝛾𝑚𝑎𝑥 , though these 

results alone cannot offer any substantial alternative explanations. Additionally, this 

investigation’s definition of 𝛾𝑚𝑎𝑥  may be different than the definition in the study that quantified 

the effects of density, meaning that the differences are simply that of measurement technique. It 

would still be interesting, though, if the trend in 𝛾𝑚𝑎𝑥  is the same in both cases. 𝛾𝑐  drops in a much 

more similar manner in both plots, swiftly at first but essentially unchanging for further increases 

in density or bending rigidity. 

In addition to the size, the form of the nonlinear regime offers further insight. As discussed 

before, the nonlinear regime can be described by the exponent . Despite the straightforward 

definition 𝐾 = 𝐴𝜎𝛼 that relates  neatly to K, deriving  from K() is a challenge. The difficulty 

lies almost entirely in determining the bounds of the stiffening regime which  describes. Once 

the bounds of the stiffening regime are defined, graphing softwaree can easily calculate a best fit 

line of the form 𝑦 = 𝑎0𝑥𝑎1 over the selected region, from which the a1 term is understood to be . 

Since 𝐾 = 𝐴𝜎𝛼, a simple method to determine the range of the non-linear regime described 

by  is to generate functions of various 𝜎𝑥 where x covers the expected range of  from 1 to 2. K 

can then be normalized separately by each of these functions, giving 𝐾 𝜎𝑥⁄ = 𝐴𝜎𝛼/𝜎𝑥. This will 

render a constant function of A when 𝛼 = 𝑥. I attempted to locate the bounds of the non-linear 

regime by using this approach on a few K() plots. The results, however, were ambiguous. No 

𝐾 𝜎𝑥⁄  was a constant function throughout the entirety of the stiffening regime. Borrowing pieces 

from two of the 𝐾 𝜎𝑥⁄  lines can produce a flat line for most of the non-linear regime with 

disruptions only before, after, and between the two pieces. Such a plain change in value of 𝛼 

indicates that there are two distinct stiffening regimes. The possibility of multiple stiffening 

regimes matches observations made on a similar system using a different model, which shows two 

separate stiffening regimes, each having a distinct value of .7,27 Along the low stress stiffening 

regime (i.e. that which directly follows the linear regime), just as along the linear regime, bending 

modes are dominant; along the high stress stiffening regime (i.e. that which occurs immediately 

before breaking), stretching modes are dominant.27 This suggests that the boundary between these 

 
e I used various iterations of Grace, XMGrace for Linux and QTGrace for MacOS. 



non-linear regimes occurs at the stress at which the strength of stretching modes surpasses those 

of the bending modes. 



Because of this 

insight, the nonlinear 

portion of K() was 

split into two intervals 

for fitting the curve. 

Indeed, a fit of the full 

nonlinear interval 

renders a plot that, 

though fairly similar to 

the curve, is 

inconsistent with 

significant portions of 

the curve. Fitting two 

intervals separately 

renders fits that are 

more exact (Fig. 15). 

While there are 

portions of the 

nonlinear regime at 

high  and at low  that 

clearly fit in the high 

stress and low stress, 

respectively, portions 

near the middle of the 

nonlinear regime were 

difficult to place. Many 

of the regimes are 

separated by a small 

interval rather than 

having an immediate 

transition between the 

two. This interval is 

marked often by a 

fluctuation in the 

function, but the 

fluctuation may be 

independent of the 

transition since similar 

fluctuations exist in the 

in the dead middle of 

clearly defined regions 

elsewhere. I determine 

the regions by drawing 

a line that appears to be 

 
Figure 15. A fit of the nonlinear regime for 𝜃̅ = 70°. The dashed line shows the range and form 
of the best fit function for the low strain nonlinear regime. Portions most suitable for fitting 
appear as a straight line on these plots, and the longest stretch of plot that appears to run along 
such a line is included in the fit region. A high strain nonlinear regime (circled) also exists for 

most averaged K() curves. This high strain regime becomes small for 𝜃̅ = 75° , about  ½ or less 
than ½ the length of the high strain regime pictured here. 

 
Figure 16.  for the low strain linear regime as a function of 𝜃̅. Data points are the  fit of the 

averaged K() curve of the 4 systems tested at each value of 𝜃̅. Error bars are the standard 

deviation of the  values of the 4 individual  K() curves from the average. 

 



parallel with a large portion of K(), marking the two edges of the region where the function ceases 

to be parallel with the line. 

The  values of the full nonlinear regime and the high strain nonlinear regime do not show 

any consistent trends. Interestingly, I find that the upper region shrinks as to become nearly 

indistinguishable at high values of 𝜃̅. This high stress nonlinear regime has been tagged in previous 

simulations as being dominated by stretching modes.27 The disappearance of this regime at high 𝜃̅ 

is surprising, then, since I would initially assume that increased bending rigidity suppresses the 

action of bending modes and thus leaves the bulk of the response to the stretching modes. Although 

the bending modes are not allowing motion, however, they may still be resisting the deformation. 

In fact, increasing 𝜃̅ makes the joints less likely to move and therefore more stress will likely 

collect in the attempt to move the stiffening joints. Stiffer networks can, after all, bear more stress, 

so it makes sense that the stiffer mode within the network is taking on all the stress. 

Analysis of the low stress nonlinear regime, by contrast, shows a clear dependence of  on 

𝜃̅:  decreases monotonically with an increase in 𝜃̅ (Fig. 16). However, this change is too slight 

to account for the differences in  between the featured model and the other popular simulation 

model, or between actin and collagen. As mentioned, the other model shows  values ranging from 

½ to 1. The apparent trend in Fig. 16 cannot even approach 1.2, let alone drop below 1 due to the 

increased bending rigidity. One might hope that high enough values of 𝜃̅ would render comparable 

 values, as I might expect that  would steadily decrease infinitely as 𝜃̅ increases. The mechanical 

response of the system begins to radically deviate from realistic load curves after 𝜃̅ = 76°, though. 

As a result, the relationship between  and 𝜃̅ loses all significance shortly after 𝜃̅ = 75°. The 

bending rigidity, at least as it is defined in the featured model, is not a contributing factor to the 

difference in the nonlinear regime between the two simulation models or between collagen and 

actin. 

Interestingly, the decrease in  thanks to increased bending rigidity is not as extreme as the 

decrease thanks to increased density.  is shown to be 3/2 for densities of 5% and 7.5% but 

decreasing to 1 at 10% and to a much lower value at 15%.19 Like with bending rigidity, the decrease 

in  corresponds to the decrease in the length of the nonlinear regime.  



 Since ℂ3 nodes are known to bear strain, there is some significance in the level of 

accumulated strain at which ℂ3 bonds began to break. This level of strain, 𝛾𝑏  was measured as the 

level of strain at which the coordination distribution in a given sample begins to deviate from its 

initial value. I measure it this way because data shows that, at this point, ℂ3 particles convert to ℂ2 

particles, which mean that bonds are breaking. The values of ℂ2 and ℂ3 remain constant at their 

initial values for a significant amount of time, then change at the same time, and ℂ3 always 

decreases by the exact same amount that ℂ2 increases. 

Through the values of 𝜃̅ tested, I find an unmistakable correlation between 𝛾𝑏  and 𝛾𝑚𝑎𝑥 , 

with a notable exception in the domain 64° ≤ 𝜃̅ ≤ 70° (Fig. 14). In this domain, there is a large 

jump in 𝛾𝑏  which carries it away from any definite correspondence with 𝛾𝑚𝑎𝑥 . This confirms that 

yield strain 𝛾𝑚𝑎𝑥  occurs when the number of bonds breaking exceeds the number being formed. 

Even one or two bonds breaking trigger the failing of the entire gel because few bonds have been 

collecting a majority of the stresses resulting from the deformation.  

 

Conclusion 
 

I confirm that, with an increase in bending rigidity embodied in an altered 𝜃̅, the nonlinear 

regime rapidly shortens. I can attribute this trend to the decreased ability of the network to 

rearrange itself to accommodate deformation, similarly to the effect of increased network density. 

In contrast to the effect of density, the effect of bending rigidity is slower to appear but the effect 

accelerates rapidly once it is manifested. I attribute the slow onset to the insignificant effect of the 

u3 term when 𝜃̅ is far from the necessary angular domain. The stiffening rate  decreases with 

increasing 𝜃̅. This change is not drastic enough, however, to explain the differences between 

simulation models or between measurements for actin and collagen using the other popular model. 

A distinct high stress nonlinear regime, whose dependence on 𝜃̅ and significance are not yet 

known, exists at higher values of 𝛾. 𝛾𝑏  is intrinsically linked to 𝛾𝑚𝑎𝑥 , as expected. 

A further investigation of the necessary angular domain is in order. In particular, it is 

important to understanding the minimum and maximum limits of the necessary angular domain, 

as well as the distance at which 𝜃̅ begins to significantly affect the accessibility of angles in the 

   
Figure 17. Snapshots of a gel network before (left) and after (right) a full simulation box length (L) of shear strain. The 
chains within the network (green) are significantly aligned along the direction of maximum extension after the 
deformation, while their direction are more or less randomized beforehand. 



domain. In order for the bending rigidity to be useful as a control parameter for gel mechanical 

response, it must be known how various levels of bending rigidity will affect each gel with its 

particular microscopic preferences. This investigation hints that the preferred angles of bonds in a 

particular gel are one such important microscopic preference.  

The main mechanism presented to explain the changing form of the nonlinear regime deals 

primarily with the ability of the network to readjust in response to deformation. The order 

parameter is an ideal quantitative measure of how well the network readjusts. The order parameter 

defines how well-aligned (i.e. how parallel) bonds are in a system at a particular time. The tensor 

order parameter is defined as: 

𝑄𝛼𝛽 = 〈𝑢𝛼𝑢𝛽 −
1

3
𝛿𝛼𝛽〉 

where 𝑢𝛼 and 𝑢𝛽 are unit vectors representing the direction of any two bonds in the system.35 𝑄𝛼𝛽  

is 0 when bond orientations are perfectly random and becomes nonzero as bonds align. 

In an ideal response to deformation, filaments in the system would align in the direction of 

principal tension. Qualitatively, bonds appear to align strongly in the direction of strain as strain 

accumulates (Fig. 17). Therefore, a gel network that is able to readjust to accommodate 

deformation will be expected to exhibit easier alignment as strain accumulates. Systems with 

higher density, which I describe to have difficulty adjusting to deformation, show poor 

alignment.19 I hypothesize that increased bending rigidity will have a similar effect, though hope 

that such a decrease in alignment tendencies might show a nuanced pattern of weaker alignment 

with more bending rigidity that would shed more light on why increased density and increased 

bending rigidity have differently patterned effects. 
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